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Abstract
Graph-Convolution-based methods have been suc-
cessfully applied to representation learning on ho-
mophily graphs where nodes with the same label
or similar attributes tend to connect with one an-
other. Due to the homophily assumption of Graph
Convolutional Networks (GCNs) that these meth-
ods use, they are not suitable for heterophily graphs
where nodes with different labels or dissimilar at-
tributes tend to be adjacent. Several methods have
attempted to address this heterophily problem, but
they do not change the fundamental aggregation
mechanism of GCNs because they rely on sum-
mation operators to aggregate information from
neighboring nodes, which is implicitly subject to
the homophily assumption. Here, we introduce a
novel aggregation mechanism and develop a RAn-
dom Walk Aggregation-based Graph Neural Net-
work (called RAW-GNN) method. The proposed
approach integrates the random walk strategy with
graph neural networks. The new method utilizes
breadth-first random walk search to capture ho-
mophily information and depth-first search to col-
lect heterophily information. It replaces the con-
ventional neighborhoods with path-based neighbor-
hoods and introduces a new path-based aggrega-
tor based on Recurrent Neural Networks. These
designs make RAW-GNN suitable for both ho-
mophily and heterophily graphs. Extensive ex-
perimental results showed that the new method
achieved state-of-the-art performance on a variety
of homophily and heterophily graphs.

1 Introduction
Graphs are ubiquitous in the real world, such as social net-
works, brain networks, transportation networks and citation
networks. Network analysis [Wang et al., 2016; Jin et al.,
2021] has been extensively studied and broadly applied in
many fields, ranging from computer science to social sci-
ences, biology, physics, and many more. Recently, message-
passing neural networks (MPNNs) [Kipf and Welling, 2017]

∗Corresponding authors

have been successfully adopted for various problems on
graphs, e.g., node classification, graph classification, link pre-
diction, and anomaly detection [Wang et al., 2022; Yu et al.,
2021].

An MPNN runs an iterative process and in each iteration,
every node sends its features as a message to its neighbors
and then aggregates messages from other nodes to update its
representation. GCN [Kipf and Welling, 2017], as a typical
MPNN, works under the homophily assumption – i.e., most
connected nodes are from the same class and have similar
attributes. GCN and its variants, like GraphSAGE [Hamil-
ton et al., 2017], possess great power for learning on graphs
and have shown excellent performance on many downstream
tasks on networks with homophily.

However, many real-world networks do not satisfy the ho-
mophily assumption. But rather, there exist many heterophily
or low homophily networks where most adjacent nodes may
belong to different classes and have dissimilar attributes. For
example, in protein structures, an amino acid type is more
likely to connect to different amino acid types rather than the
same amino acid type; In email networks, spam users often
contact normal users; In e-commerce networks, fraudsters are
more likely to connect to accomplices than to other fraudsters.
Conventional GCNs are not designed for heterophily net-
works and they use message propagation mechanisms based
on the homophily assumption, as a result, information from
different classes will get mixed during propagation on het-
erophily networks using such message propagation methods.

To deal with the homogeneity restriction in GCNs, several
methods have already been proposed. Based on the aggre-
gation mechanisms that they use, these methods can be di-
vided into two categories: (1) Methods adjusting attention
weights between neighbors of different labels in aggregation,
which include GGCN [Yan et al., 2021], CPGNN [Zhu et al.,
2021a], HOG-GCN [Wang et al., 2022], GNN-LF/HF[Zhu
et al., 2021b] and BM-GCN [He et al., 2022]. In essence,
these methods assign a weight to each connected node pair
with the guidance of heterophily information. In specific,
label-guided methods [Zhu et al., 2021a; Wang et al., 2022;
He et al., 2022] integrate label information into their frame-
work and aggregate nodes with the same label in the neigh-
borhood and reduce the degree of aggregation of neighbors
with different labels; Signed-message-guided methods [Yan
et al., 2021; Zhu et al., 2021b] extend attention weight from
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[0, 1] to [−1, 1]. As a result, messages between nodes of the
same type of label are assigned positive weights, which boost
message passing in the same class, and messages between
nodes of different labels are given negative values, which
prevent dissimilar neighbors from passing harmful and irrel-
evant information to one another. (2) Methods directly ag-
gregating messages among higher-order neighbor nodes, in-
cluding Geom-GCN [Pei et al., 2020], H2GCN [Zhu et al.,
2020], GPR-GNN [Chien et al., 2021] and LINKX [Lim
et al., 2021]. These methods assume that directly adjacent
neighborhoods may be heterophily-dominant for heterophily
network, but the higher-order neighborhoods are homophily-
dominant which can provide more useful information for
the target node. By explicitly aggregating information from
higher-order neighborhoods, these methods alleviate the het-
erophily problem to certain extent.

However, these methods do not change the fundamental
aggregation mechanism of GCNs because of the summation
operator in the aggregation process, which is implicitly sub-
ject to the homophily assumption. To be specific, label-
guided methods try to learn the weights between nodes of
different labels to 0. In fact, this is equivalent to omitting the
information of heterophily nodes in the aggregation, which
is useful for network representation learning and downstream
tasks. In signed-message-guided methods, weight −1 is in-
troduced based on an analysis of graphs with two kinds of
labels, so that this design is only effective on networks with
a small class number close to 2 and do not work well for net-
works with large number of classes. In short, these designs
alleviate the homogeneity restriction problem to some extent,
but they are still constraint by the summation aggregator. In
addition, the existing methods that directly aggregate higher-
order neighbor use the classical summation aggregator to ag-
gregate higher-order neighbors based on their distances to the
target node and concatenate aggregated results with different
distances. These methods also suffer from the constraints of
the summation aggregator.

To address these problems, we introduce a new aggrega-
tion mechanism and propose a RAndom Walk aggregation-
based Graph Neural Network, short-handed as RAW-GNN.
We integrate random walk sampling into graph neural net-
works and extend the conventional neighborhoods to k-hop
path-based neighborhoods. A k-hop path formed by random
walks preserves the original attributes on this k nodes and the
original structural connections of these nodes in the random
walk sequence. In this way, the path-based neighborhoods
can represent the neighborhood distribution of the target node
better than the conventional neighborhoods. Furthermore, we
utilize breadth-first search random walk (BFS) to capture ho-
mophily information and depth-first search (DFS) to collect
heterophily information. To go beyond the exiting aggrega-
tion mechanism of GCNs and to take full advantage of the
path-based neighborhoods, we adopt a sequential Recurrent
Neural Networks (RNN) based aggregator, which can take
into consideration the order information of neighbor nodes
preserved by random walks. The RNNs have the advantage
that they can handle the diverse attributes of adjacent nodes,
which accommodates the need for heterophily networks. Fi-
nally, we use the attention mechanism to learn the impor-

Figure 1: Existing methods omit some of the direct message chan-
nels between nodes of different distances to the target node, like
edge e1,3 and e2,3. RAW-GNN employs the path-based neighbor-
hoods detected by random walks to tackel this problem.

tance of different paths from DFS channel (and BFS channel
respectively), which can better extract heterophily (and ho-
mophily) neighborhood distribution with minimal mixing of
information and can enable the model to automatically make
a trade-off between homophily and heterophily according to
different network characteristics.

2 Preliminaries
We now present notations and related definitions, including
path-based neighborhood and generalized homophily ratio,
which are important for our work.

2.1 Basic Notations
Let G = (V,E,X) denote an undirected, unweighted and
attributed network, where V = {v1, v2, ..., vn} is a set of n
nodes andX ∈ Rn×f is a set of node attributes. Every node i
is associated with f attributes xi, which form the i-th row of
X . E = {eij} ⊆ V × V is a set of edges represented by an
adjacency matrix A = [aij ] ∈ Rn×n, where aij = 1 if nodes
vi and vj are connected, or aij = 0 otherwise.

In this paper, we focus on semi-supervised node classifica-
tion task. In a semi-supervised node classification task, ev-
ery node belongs to a class c ∈ C and |C| is the number of
classes. Here, the labels of nodes are given in set VL. Every
node vi ∈ VL is assigned with a label yi ∈ L = {1, 2, ...|C|}.
The objective of node classification task is to predict the la-
bels for all the unlabeled nodes in node set V \VL.

2.2 Message-Passing Neural Network
In a message-passing neural network, neighborhood is de-
fined as neighbor nodes that are one or more hops away. Mes-
sages from nearby nodes are aggregated to the target node and
updated iteratively. The l-th layer of a MPNN can be defined
as follows:

n
(l)
i =aggregate(l)

({
h
(l−1)
i : i ∈ Ni

})
h
(l)
i =combine(l)

(
h
(l−1)
i , n

(l)
i

) (1)



where h(l)i is the feature vector of node i in the l-th layer.
The beginning vector h(0)i is xi, and Ni is a set of neighbor
nodes of node i. Different choices of Ni, aggregate(l) and
combine(l) result in different models. Usually, the neighbor
nodes of node i are either the adjacent nodes of i or the k-
hop neighbor nodes of i. In the following subsection, we will
define another kind of neighborhood, which is based on paths.

2.3 Path-based Neighborhoods
The path-based neighborhood has already been applied to
heterogeneous graphs [Fu et al., 2020] and knowledge graphs
[Du et al., 2021]. Here we modify their definition to make it
suitable for heterophily graphs. Formally, a path P is de-
fined in the form of an ordered list P = {vp1 , vp2 , ..., vpK},
where vpk ∈ V, k = 1, 2, ...,K and epkpk+1

∈ E, k =
1, 2, ...,K − 1, and K is the length of the path. A path-based
neighbor of node i is denoted as Pi, where the ending node
in the list vpK is vi. All path-based neighbor Pi of node i
collected by strategy s ∈ S forms the path-based neighbor-
hood Ns

i , where S is the set of strategies. In other words, all
Pi ∈ Ns

i .

2.4 Generalized Edge Homophily Ratio
The edge homophily ratio [Zhu et al., 2020] mea-
sures the overall homophily in a graph. Specifically, it
measures the fraction of edges that connect nodes that
have the same label and it is defined as H label

E (G) =
|{(u, v) : eu,v ∈ E ∧ yu = yv}|/|E|. This metric is based on
node labels. Here we generalize edge homophily ratio to
node features. First, we define the similarity function be-
tween two nodes as sim : V × V → [0, 1]. This function
should have such property that, when node i and node j are
similar, sim(i, j) is close to 1 and when node i and node j are
dissimilar, sim(i, j) is close to 0. Then the generalized edge
homophily ratio HE : G→ [0, 1] is defined as:

HE(G) =

∑
(i,j)∈E sim(i, j)

|E|
(2)

when the similarity function sim(i, j) is Eq. (3), Eq. (2)
becomes the label-based edge homophily ratio mentioned
above.

sim(i, j) =

{
1, yi = yj
0, yi 6= yj

(3)

We can also use node features to define node similarity, e.g.,
cosine similarity in Eq. (4), then we can generalize the con-
cept of homophily ratio to features.

sim(i, j) = cos(xi, xj) (4)

3 The Architecture
In this section, we describe the proposed RAW-GNN for ho-
mophily and heterophily graph embedding. We start with a
brief overview and then introduce the details of components.

3.1 Overview

To let the aggregation mechanism truly go beyond the ho-
mophily assumption, here we propose a novel approach that
consists of four components: random walk generator, RNN-
based path aggregator, attention-based intra-strategy combi-
nator and inter-strategy combinator. The whole framework
of our approach RAW-GNN is shown in Fig. 2. Differ-
ent from the frameworks of other GCNs, we encode the ho-
mophily and heterophily information into two different chan-
nels. In specific, we use two random walk generators to sam-
ple k-hop paths, i.e., using Breadth-First Search random walk
(BFS) generator to sample homophily neighborhood distribu-
tion and Depth-First Search (DFS) generator to sample het-
erophily neighborhood distribution. Each sampling strategy
(BFS or DFS) will sample multiple paths so as to capture
the neighborhood distribution more accurately. After getting
BFS neighborhood paths and DFS neighborhood paths, two
RNN-based path aggregators are used to aggregate the or-
dered attributes of nodes in a path to form a path embedding.
Then, we use the attention mechanism to learn the impor-
tance of different paths from DFS strategy and BFS strategy
respectively, and form two strategy-specific embeddings. At
last, we concatenate the two embeddings from BFS channel
and DFS channel to form the whole embedding which can
represent homophily and heterophily information together in
the same framework.

3.2 Random Walk Generator

The key role of neighbors is to provide useful information for
the target node, so it doesn’t have to be like neighborhoods in
classical GCNs. Here, we use paths to define neighborhood.
However, given a receptive field, there are more paths than
nodes so that it is not computationally feasible to use all the
paths especially when the receptive field is large. To collect
more information with fewer paths in the search space, we
adopt a 2-nd order random walk with two parameters p and
q from Node2Vec [Grover and Leskovec, 2016] to simulate
Breadth-first Search and Depth-first Search.

Consider a random walk that has traversed edge et,s , is
now on node s and is going to visit the next node r. We set
the unnormalized transition probability as follows:

Ppq (vi = r|vi−1 = s, vi−2 = t) =


1/p if dtr = 0
1 if dtr = 1
1/q if dtr = 2
0 otherwise

(5)
where dtr is the length of the shortest path between nodes s
and r. When we set p < 1 and q > 1, the random walk tends
to behave like BFS; and when p > 1 and q < 1, the random
walk tends to behave like DFS.

BFS collects information from the immediate neighbors of
the target node and can extract homophily information (Fig.
2). DFS tends to sequentially reach nodes at increasing dis-
tances from the source node, which can extract heterophily
information. Since real networks exhibit both homophily and
heterophily, so both search strategies are applied.



Figure 2: The framework of the proposed RAW-GNN. We extend the neighborhood of traditional GCNs to the ordered path-based neigh-
borhood sampled by the random walk generator. Then the sequential RNN-based aggregator is applied. This combination can alleviate the
problem brought by the difference of node attributes of adjacent nodes under heterophily. Next, the attention-based intra-strategy combina-
tor receives path embeddings sampled by the same strategy and combines them into a strategy-specific embedding. Last, the inter-strategy
combinator concatenates embeddings from different strategies to get the final embedding with the minimal information mixing.

3.3 RNN-based Path Aggregator
Given a path Pi, a path aggregator should learn the struc-
tural and semantic information of all nodes on P , not just the
starting node vi and the ending target node, but also all the
context nodes in between. Note that the existing methods that
treat all neighboring nodes as an unordered set. Nevertheless,
a path naturally comes with an order, which also preserves
the ordered connections among the nodes on the path. The
objective of the path aggregator is to encode all the nodes
on the path and consider the order of the nodes on the path
to preserve more relational information among the connected
nodes. The path aggregator fpath(l) : RK×dl → Rdl for the
l-th layer is defined as:

h
(l)
P = fpath

(l)(P ) = fθ(
{
h(l)n1

, h(l)n2
, ..., h(l)nK

}
) (6)

where h(l)P ∈ Rdl is the l-th layer embedding vector of path
P = {vn1 , vn2 , ..., vnK

}, h(l)pk ∈ Rdl is the feature of node
vnk

in layer l, k = 1, 2, ...,K and θ represents all the learn-
able parameters of the aggregator. To encode a path, we can
use any encoder that takes the order of elements into consid-
eration. Here we choose a simple sequence encoders GRU
(Gate Recurrent Unit) [Cho et al., 2014], a variant of RNN
with a gating mechanism as the message function.

For simplicity, we set the layer to l and omit the superscript
indicating the layer of an embedding in the rest of the paper
unless otherwise specified.

3.4 Attention-based Intra-Strategy Combinator
After computing the path embeddings hsP ∈ NS

i for every
node vi ∈ V for strategy s, we need to combine them into
strategy-specific node embeddings. We assume that given a
certain sampling strategy, the generated paths obey a corre-
sponding distribution . Since all paths are sampled from the
same distribution, it is reasonable to sum these paths to ap-
proximate the corresponding distribution. It is worth noting

that this summation is different from combining node embed-
dings in GCNs because the pattern exhibited in a path cannot
be well captured in a single node and beginning with sum-
ming node embeddings like typical GCNs weakens such path
pattern. Furthermore, different paths may contribute differ-
ently to the target node embedding, so that we adopt an at-
tention mechanism to learn the different weight of the path
embeddings in NS

i , which is defined as:

eP =LeakyReLU(aTP · hsP )

αP =
exp(eP )∑

Q∈NS
i
exp(eQ)

hsi =σ(
∑

P∈NS
i

αP · hsP )

(7)

where aP ∈ Rdl is the learnable attention parameter, aTP
denotes the transpose of aP , eP is the unnormalized impor-
tance weight of path P , and αP is the path weight normalized
across all the paths in NS

i using softmax. It is worth noting
that we do not consider the embedding of the target node hi
separately again during the combination procedure like Eq.
(1), since every path in NS

i already contains hi as its ending
node embedding. To further stabilize the learning process,
we adopt the standard multi-head attention. Specifically, H
attention heads in Eq. (7) are used and then their embeddings
are concatenated, which is formalized as:

hsi =
H

||
h=1

σ(
∑

P∈NS
i

αhP · hsP ) (8)

3.5 Inter-Strategy Combinator
After aggregating the path information within every strategy,
we need to combine them using an inter-strategy combina-
tion layer. Since different strategies gather paths of differ-
ent distribution, in order to combine embeddings from dif-
ferent strategies without mixing them, we use concatenation



to combine embeddings from different strategies, rather than
summing them as done in the GCN [Kipf and Welling, 2017]
model, which is given by:

hi =
S

||
s=1

hsi (9)

where hi ∈ Rdfinal is the final embedding of node vi,
dfinal = H × dL × |S|, and |S| is the number of strategies.

3.6 Classifier
In this work, we focus on the semi-supervised node classi-
fication task. We use a linear layer followed by a softmax
to compute the predicted label probabilities, and employ the
standard cross-entropy as the loss:

ŷi = softmax(hi ·W )

L = − 1

|VL|
∑
vi∈VL

|C|∑
c=1

Yic log(ŷic)
(10)

where W ∈ Rdfinal×|C| is the learnable weight matrix and
Yi, ŷi ∈ R|C| is the one-hot embedding of label yi and the
predicted label of i respectively, Yic = 1 when c = yi. The
other elements in Yi are all set to zero.

4 Experiments
We now compare our RAW-GNN with the state-of-the-art
models on the problems of node classification and visualiza-
tion using seven real-world datasets varying from strong het-
erophily to strong homophily.

4.1 Datasets
To demonstrate that RAW-GNN can adaptively learn path
propagation mechanism under both homophily and het-
erophily, we evaluate the performance of RAW-GNN and
the existing state-of-the-art methods on seven real-world
datasets, including three homophilic networks and four het-
erophilic networks. The features of these datasets are summa-
rized in Table ??. L.H.R. represents the label-defined edge
homophily ratio of the network. F.H.R represents the cosine
feature edge homophily ratio of the network.

Cora, Citeseer and Pubmed are homophilic citation net-
work benchmark datasets [Sen et al., 2008; Namata et al.,
2012], where nodes represent papers, and edges represent ci-
tations between papers. Node features are the bag-of-words
representation of papers, and node labels are academic topics.

Cornell, Texas and Wisconsin are webpage datasets col-
lected from computer science departments of corresponding
universities [Pei et al., 2020], where nodes represent web
pages, edges are hyperlinks, node features are the bag-of-
words representation of webpages, and node labels are pages
categories (student, project, course, staff, and faculty). Ac-
tor is a heterophilic actor co-occurrence network [Tang et
al., 2009], in which nodes correspond to an actor, and the
edge between two nodes denotes co-occurrence on the same
Wikipedia page. Node features correspond to some keywords
in the Wikipedia pages. Node labels are categories in term of
words of actor’s Wikipedia.

Datasets Texa. Wisc. Acto. Corn. Cite. Pubm. Cora
Nodes 183 251 7600 183 3327 19717 2708
Edges 309 499 33544 295 4732 44338 5429

Features 1703 1703 931 1703 3703 500 1433
Classes 5 5 5 5 6 3 7
L.H.R 0.06 0.18 0.22 0.30 0.74 0.80 0.81
F.H.R 0.35 0.34 0.16 0.31 0.19 0.27 0.17

Table 1: The Statistics of Datasets

4.2 Baselines
We compare our proposed approach RAW-GNN with the fol-
lowing baseline methods: 1) MLP (Multi-Layer Perceptron),
which only uses node attributes; 2) Node2Vec [Grover and
Leskovec, 2016], which only uses graph structures. Since
our work adopt a similar random walk sampling strategy of
Node2Vec, we add it for comparison; 3) Traditional GNN
models : GCN [Kipf and Welling, 2017] and GraphSAGE
[Hamilton et al., 2017], which work under homophily as-
sumption; 4) Frameworks designed for heterophily: H2GCN
[Zhu et al., 2020], CPGNN [Zhu et al., 2021a], GPR-GNN
[Chien et al., 2021], BM-GCN [He et al., 2022] and HOG-
GCN [Wang et al., 2022]. In this paper, we choose the best
results of each method for comparison, since some methods
have more than one variants.

4.3 Parameter Setup
Following [Pei et al., 2020] and [Wang et al., 2022], we gen-
erate 10 random splits for all datasets. In each dataset, 48%
of the nodes are used as the training set, 32% of the nodes are
used as the validation set, and the rest as the test set. For a
fair comparison, all methods use the same 10 random splits.
All the parameters of the baseline methods were set as what
were used by their authors. For the random walk sampling
in RAW-GNN, we use DFS strategy with p = 10, q = 0.1
and BFS strategy with p = 0.1, q = 10. We choose different
path lengths from {3, 4, 5, 6, 7} for different datasets. With
every strategy, we sample 6 paths for each node in one epoch.
For the RNN-based aggregator, we use GRU with 32 hidden
units and attention head number is set to 2. The learning rate
is set to 0.05. We adopt the Adam optimizer and the default
initialization in Pytorch.

4.4 Node Classification
We conduct experiments on seven real-world datasets to com-
pare the performance of different models for node classifica-
tion (Table ??). We use the mean accuracy and standard de-
viation as the evaluation metric. As shown, our RAW-GNN
performs best on 5 out of 7 networks. Below are the detailed
observations.

• Our RAW-GNN approach performs the best on all of
the four heterophilic networks, i.e., Texas, Wisconsin,
Actor, and Cornell, which empirically proves the effec-
tiveness of RAW-GNN. To be specific, RAW-GNN out-
performs heterophily-agnostic models, i.e., Node2Vec,
GCN and GraphSAGE, by 34.20%, 25.33% and 2.81%
respectively. This is largely because the rival meth-
ods cannot generalize to heterophilic scenarios. Graph-
SAGE performs relatively well and we assume the rea-
son is the use of neighbor sampling like our RAW-GNN,



Dataset Texas Wisconsin Actor Cornell Citeseer Pubmed Cora Avg
Acc

Avg
Rank

MLP 83.24±5.77 86.47±3.33 36.49±1.16 84.32±6.14 69.10±2.69 86.37±0.64 72.98±2.31 74.14 6.00
Node2Vec(DFS) 46.76±4.84 41.96±4.90 23.40±1.17 47.57±5.43 52.00±2.40 76.20±0.46 77.91±2.32 52.26 9.86
Node2Vec(BFS) 44.05±6.29 40.39±5.28 23.33±0.96 45.95±8.29 45.80±2.62 65.76±0.44 72.03±1.86 48.19 11.00

GCN 55.68±9.61 53.73±7.65 30.64±1.49 55.14±7.57 74.81±1.87 87.25±0.56 86.60±1.44 63.41 8.29
GraphSAGE 85.41±5.16 85.49±3.53 35.99±1.52 78.38±6.84 74.29±1.67 89.30±0.57 86.42±1.55 76.47 5.57

H2GCN 82.16±8.21 82.57±3.21 36.48± 1.16 78.92±5.24 75.95±2.18 88.78±0.53 87.69±1.37 76.08 5.00
CPGNN 74.32±7.38 81.76±6.74 35.51±1.85 63.51±5.83 75.52±1.84 89.08±0.67 87.18±1.13 72.41 6.29

GPR-GNN 84.59±4.37 83.92±3.14 36.47±1.38 82.97±5.68 75.12±1.98 87.38±0.63 86.70±1.03 76.74 5.43
BM-GCN 85.13±4.64 82.82±8.89 36.32±1.35 79.14±8.44 75.94±2.36 90.25±0.71 87.71±1.11 76.76 3.86

HOG-GCN 85.17±4.40 86.67±3.36 36.82±0.84 84.32±4.32 76.15±1.88 88.79±0.40 87.04±1.10 77.85 2.86
RAW-GNN 85.95±4.15(4) 88.24±3.72(4) 37.45±1.21(5) 84.86±5.43(4) 75.38±1.68(5) 89.34±0.66(4) 87.89±1.52(7) 78.44 1.71

Table 2: Classification Results with mean value and standard deviation. The best result is bold and the second best is underlined. For our
RAW-GNN, the number after deviation denotes the random walk path length chosen for the corresponding dataset.

(a) GCN (b) CPGNN (c) H2GCN (d) GPRGNN (e) RAWGNN

Figure 3: Visualization results on Cora dataset

which demonstrates the effectiveness of sampling in het-
erophily graphs. Compared with the methods designed
for heterophily, such as H2GCN, CPGNN and GPR-
GNN, BM-GCN, and HOG-GCN, RAW-GNN also
achieves an improvement between 0.88% and 10.35%
by mean accuracy. These results demonstrate the effec-
tiveness of our new method on heterophily networks.

• On homophilic networks, i.e., Cora, Citeseer, and
Pubmed, RAW-GNN also has competitive performance
compared with the baselines. Specifically, RAW-GNN
performs the best on Cora and the second best on
Pubmed. We assume that since every dataset is a mix-
ture of homophily and heterophily, the heterophily in-
formation from the DFS channel also helps model per-
formance on these homophily datasets. Note that RAW-
GNN outperforms GCN and GraphSAGE on all these
datasets by 1.32% and 0.87% by mean accuracy. These
results demonstrate that RAW-GNN still maintains com-
parable performance on homophilic datasets. Further-
more, for datasets with lower cosine feature homophily
ratios (F.H.R < 0.2), the best path-length is longer,
which indicates that heterophily networks need large re-
ceptive field to extract the hidden neighborhood distribu-
tion in the network. These results show the effectiveness
and robustness of the proposed framework empirically.

4.5 Visualization
In addition to the quantitative node classification, we also vi-
sualize node embeddings on Cora dataset to assess the em-
bedding results qualitatively. We project the node embed-
dings into a 2-dimensional space using t-SNE [LJPvd and
Hinton, 2008]. Here we illustrate the visualization results
of GCN, H2GCN, CPGNN, GPR-GNN and our RAW-GNN
in Fig. 3, where points with different color indicate differ-
ent classes. As shown, the visualization results of GCN and

CPGNN are less satisfactory in this case, since points with
the same class are dispersed and some points with different
classes are mixed. As shown, the visualization of GPR-GNN
and H2GCN are better but still blurred along the border of dif-
ferent classes. The result of our RAW-GNN is the best, where
the border between different classes is the most discernible.
This result is consistent with classification result.

5 Conclusion
In this paper, we propose a random walk aggregation based
graph neural network that can process homophily and het-
erophily graphs at the same time. The proposed frame-
work extends the neighborhoods in traditional GCNs to k-hop
path-based neighborhoods generated by two random walk
sampling strategies (i.e., breadth-first search and depth-first
search). Then, the proposed framework uses the sequential
RNN-based aggregator to encode the ordered attribute infor-
mation of neighbor nodes. Then, the path embeddings for
each strategy are gathered to the target node with an atten-
tion mechanism to form strategy-specific embedding. At last,
node embeddings from different strategy channels are con-
catenated to prevent information of different characteristics
from mixing and enable the model to automatically trade-
off between homophily and heterophily according to differ-
ent network characteristics. Experiments on seven real-world
datasets demonstrate that the proposed approach outperforms
existing methods under heterophily, and also performs com-
petitively under homophily.
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